Sawi Decomposition Method for Volterra Integral Equation with Application

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Numerical Method for Solving Stochastic Volterra-Fredholm Integral Equation

In this paper, we propose a numerical method based on the generalized hat functions (GHFs) and improved hat functions (IHFs) to find numerical solutions for stochastic Volterra-Fredholm integral equation. To do so, all known and unknown functions are expanded in terms of basic functions and replaced in the original equation. The operational matrices of both basic functions are calculated and em...

متن کامل

COLLOCATION METHOD FOR FREDHOLM-VOLTERRA INTEGRAL EQUATIONS WITH WEAKLY KERNELS

In this paper it is shown that the use of‎ ‎uniform meshes leads to optimal convergence rates provided that‎ ‎the analytical solutions of a particular class of‎ ‎Fredholm-Volterra integral equations (FVIEs) are smooth‎.

متن کامل

Application of Fixed Point Method for Solving Nonlinear Volterra-hammerstein Integral Equation

There are various numerical methods to solve nonlinear integral equations. Most of them transform the integral equation into a system of nonlinear algebraic equations. It is cumbersome to solve these systems, or the solution may be unreliable. In this paper, we study the application of the fixed point method to solve Volterra-Hammerstein integral equations. This method does not lead to a nonlin...

متن کامل

Fredholm-volterra Integral Equation with Potential Kernel

A method is used to solve the Fredholm-Volterra integral equation of the first kind in the space L2(Ω)×C(0,T ),Ω = {(x,y) : √ x2+y2 ≤ a}, z = 0, and T <∞. The kernel of the Fredholm integral term considered in the generalized potential form belongs to the class C([Ω]×[Ω]), while the kernel of Volterra integral term is a positive and continuous function that belongs to the class C[0,T ]. Also in...

متن کامل

Hyers-Ulam stability of Volterra integral equation

We will apply the successive approximation method forproving the Hyers--Ulam stability of a linear integral equation ofthe second kind.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematics

سال: 2020

ISSN: 2314-4785,2314-4629

DOI: 10.1155/2020/6687134